Peakons and periodic cusp wave solutions in a generalized Camassa–Holm equation

نویسندگان

  • Lijun Zhang
  • Li-Qun Chen
  • Xuwen Huo
چکیده

By using the bifurcation theory of planar dynamical systems to a generalized Camassa–Holm equation 0960-0 doi:10 * Co E-m mt þ c0ux þ umx þ 2mux 1⁄4 cuxxx with m = u auxx, a 5 0, c0, c are constant, which is called CH-r equation, the existence of peakons and periodic cusp wave solutions is obtained. The analytic expressions of the peakons and periodic cusp wave solutions are given and numerical simulation results show the consistence with the theoretical analysis at the same time. 2005 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability of the mu-Camassa- Holm Peakons

The μ-Camassa-Holm (μCH) equation is a nonlinear integrable partial differential equation closely related to the Camassa-Holm equation. We prove that the periodic peaked traveling wave solutions (peakons) of the μCH equation are orbitally stable. AMS SUBJECT CLASSIFICATION (2000): 35Q35, 37K45.

متن کامل

Stability of the μ-Camassa-Holm Peakons

The μ-Camassa–Holm (μCH) equation is a nonlinear integrable partial differential equation closely related to the Camassa–Holm equation. We prove that the periodic peaked traveling wave solutions (peakons) of the μCH equation are orbitally stable.

متن کامل

Orbital Stability of Peakons for a Generalization of the Modified Camassa-holm Equation

The orbital stability of the peaked solitary-wave solutions for a generalization of the modified Camassa-Holm equation with both cubic and quadratic nonlinearities is investigated. The equation is a model of asymptotic shallow-water wave approximations to the incompressible Euler equations. It is also formally integrable in the sense of the existence of a Lax formulation and bi-Hamiltonian stru...

متن کامل

Stability of peakons for the generalized Camassa - Holm equation ∗

We study the existence of minimizers for a constrained variational problems in H(R). These minimizers are stable waves solutions for the Generalized Camassa-Holm equation, and their derivative may have a singularity (in which case the travelling wave is called a peakon). The existence result is based on a method developed by the same author in a previous work. By giving examples, we show how ou...

متن کامل

On the Bifurcation of Traveling Wave Solution of Generalized Camassa-Holm Equation

The generalized Camassa-Holm equation ut + 2kux − uxxt + auux = 2uxuxx + uuxxx + γuxxx is considered in this paper. Under traveling wave variable substitution, the equation is related to a planar singular system. By making a transformation this singular system becomes a regular system. Through discussing the dynamical behavior of the regular system, the explicit periodic blow-up solutions and s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006